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AbstmcL We find that the end-toend distance critical exponent Y is close to the Euclidean value 
3/4 for self-avoiding walks (SAWS) on fractals that are composed of homogeneous parts of sile 
4 13 26. More precisely, we find that SAWS on fractals with smaller homogeneous parts (b c 7.5) 
have U > 314, while U < 314 on fractals with b > 27. We establish this result in the case of three 
quite different fractal families: the Sierpinski gasket (SO) family, the plane-filling (E3 family, 
and the checkerboard [CB) family of hactals. In the case of the first WO families (So and PF), the 
relevant values for U were found previously by applying the Monte Carlo renormalization p u p  
(MCRGJ method. but the specific value bh was not recognized, On the other hand. for the U1 
fractals only the exact renormalization gmup (RG) results were known previously (for 3 4 b 6 9, 
where b is an odd integer that serves as the fractal enumerator). In this paper we extend the 
sequence of the known results for the c~ family up to b = 81 by p d i d n g  the MCRO method. 
The new results have revealed the occunencc of the aforementioned crossing of the Euclidean 
value 314. We discuss the significance of the crossing within the current knowledge of SAWS on 
fractals. 

1. Introduction 

Recent investigations of self-avoiding walks (SAWS) on the Sierpinski-gasket (SO family of 
fractals [ 1.21, and on the plane-filling (PR family [3], revealed that the critical exponent U 
(associated with the mean-squared end-to-end distance) can be larger as well as smaller than 
314. which is the value predicted for two-dimensional Euclidean lattices. Members of the SG 
family can be enumerated by an integer b (2 < b i m), while members of the PF family can 
be enumerated by the odd integer b 2 3. It was interesting to observe that in both cases (for 
the studied intervals 2 < h < 80 and 3 < b < 121 for the SG and PF families, respectively) 
U displayed a kind of monotonic decrease with b and, more interestingly, it crossed the 
value 314 at h % 27 in both cases. This may have appeared as a peculiarity of the two 
families studied, since no similar cases are known. In particular, the exact renormalization 
group WG) study 141 of SAWS on the first four members of the checkerboard (CB) family of 
fractals did not indicate that U as a function of the conesponding fractal enumerator b (an 
odd number, 3 < h < CO) could behave in the same way. However, in this paper we apply 
the Monte Carlo renormalization group (MCRG) method to study SAWS on the CB fractals for 
3 < b < 81 and demonstrate that U displays the same type of behaviour in the region close 
to b % 25. Therefore, we can say that in all three cases the critical exponent U crosses the 
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Euclidean value in a very narrow region of b (25 < b < 27). that is. for fractals which have 
homogeneous parts of a particular size 4 % 26. To our knowledge, this is the first kind 
of universality observed for SAWs on fractals. This finding explains, for instance, certain 
results related to the controversial problem of SAWS on the critical percolation clusters. 

The MCRG method used in this paper to get values of U for SAWS on CB fractals is 
based on the approach applied in the case of SG [2] and PF [3] fractals. It is not a 
straightforward generalization of the MCRG approaches [2: and [31 that could work in the 
case of CB fractals. Indeed, in this case one needs three parameters [4] to formulate an 
appropriate exact renormalization group @G), which makes the corresponding Monte Carlo 
(MC) simulations more complex. We have found means to handle this complexity in such a 
way that the obtained MCRG results deviate by at most 0.06% from the limited set of available 
exact results 141. Details of the present MCRG approach are given in the next section. In 
addition, in section 2 we shall describe the CB family of fractals and introduce the requisite 
RG parameters for studying SAWs on these fractals. In section 3 we present the obtained 
results and discuss their significance within the framework of the current knowledge of the 
properties of SAWS on fractals. 

2. The three-parameter Monte Carlo renormalization group 

Each member of the CB family of fractals is labelled by an odd integer b 2 3 and can be 
obtained as the result of an infinite iterative process of successively enlaiiing the fractal 
structure b times and replacing the smallest parts of the enlarged structure with the generator 
(initial structure). The generator of a CB fracial is a square, of size bx b, composed of b rows 
of unit squares, so that within each row and each column every other of them is removed 
(see figure I). Thus, the b = 3 fractal appears to be equivalent to the Vicsek snowflake 
fmctal [5], whereas the b = w fractal generator appears to be a z / 2  wedge of square 
lattice. The fractal dimension df for an arbitrary member specified by b can be easily found 
to be ln[(b2 + 1)/21/ In b. On the other hand, the spectral dimension d, can be deduced, for 
b = 3 and b = 5 ,  from the known data [61 for the resistivity of the corresponding electrical 
networks (ds = 1.18863 and ds = 1.30161 fo rb  = 3 and b = 5, respectively), while for 
b > 7 a similar calculation of the resistivity t u n s  out to be formidable. For increasing 
b, one can expect that members of the CB family become more and more similar to the 
ordinary square lattice, which is indicated by the fact that the fractal dimension d, tends to 
2 when b -+ w. 

Figure 1. The fracraclal generators of the fin1 two members, b = 3 and b = S. of the checkerboard 
(CBI family of fractals, The black squares do not belong to the generalon and. accordingly. they 
are no1 available for SAWS. 
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The critical exponent U describes the scaling law (R,?,) - N2" for the mean squared 
end-to-end distance for N-step SAWS (assuming that N is very large). We can calculate this 
critical exponent in the framework of the RG method [4]. in which we consider the rth-stage 
fractal structure lattice (that can be obtained after the rth step of the iterative construction 
of the entire fractal) and introduce the three restricted partition functions 

where x is the weight factor (hgacity) for each elementary step of the SAW and FN is the 
number of all possible N-step SAWS that start at one comer and end at the nearest comer of 
an rth-stage fractal structure (see figure 2). Similarly, GN in (2) is the number of N-step 
SAWS that start at one comer and end at the diagonally opposite comer of the rth-stage 
fractal structure, and HN is the number of N-step SAWS that consist of two non-intersecting 
SAW parts, such that each of them starts at one comer and ends at one of two nearest comers 
of the rth-stage fractal structure (see figure 2). 

F"' G"' H"' 
Figure 2. Schematic representation of lhe three restricted panition functions (for an rlh-stage 
fractal stlucture) used in the calculation of the SAW critical exponent Y. The interior details of 
the rlh-order fractal svucture is not shown (it is manifested by the wiggles of the SAW paths). 

The recursive nature of the fractal construction implies the following recursion relation, 

for the restricted partition function F, and quite similar relations for the restricted partition 
functions G and H. Because of the underlying self-similarity, the corresponding set of 
relations does not depend on the particular stage of fractal construction. For this reason, 
the coefficients fNr.Nti.N,, are not functions of r. Each of them represents the number of 
ways in which the corresponding part of the SAW path, within the (r + 1)th-stage fractal 
structure, can be comprised of all three types of the SAW paths within the fractal structures 
of the next lower order. Consequently, fNF,NG.NH represents the number of ways in which 
the F type of SAWS (see figure 2). within the (I + 1)th-stage of fractal structure, can be 
constructed so that it  contains NF, NG and NH parts, respectively, of the F, G and H type 
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of SAWS within the comprising rth stages of fractal construction (specific values of these 
coefficients, forb  = 5 and h = 7, can be found in [4]). 

The set of relations of the type (4) can be considered as the RG transformations for the 
SAW problem under study (in what follows, we shall use the prime symbol as a superscript 
for the (r + 1)th-order parameters and no indices for the rth-order parameters). In order 
to find the critical exponent v, we should determine the non-trivial fixed point of these 
transformations, and then we should solve the corresponding eigenvalue problem of the 
linearized RG transformations, that is, we should solve the equation 
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where the asterisk means that all derivatives should be taken at the fixed point. Knowing 
the relevant eigenvalue, which we denote by A,. we can determine the critical exponent U 
using the formula 

In b 
In A, (b) ’ 

”=- 

To learn a specific value of v ,  for a given b, one should first find the coefficients fNF.Nc,N,, 
and the corresponding coefficients for the functions G and H. However, finding exact 
values of these coefficients requires an enormous amount of computer work, which has 
been so far performed only for b < 9 141. Thus, to get an entire sequence of values of v 
for b 2 11, we are going to circumvent the problem of finding the exact coefficients in the 
RG equations by applying the MCRG technique. 

The MCRG method, if properly applied, allows us to find directly the derivatives that 
appear in the eigenvalue equation (5). It starts by locating the non-trivial fixed point, which 
requires, at the beginning, an implementation of the MC simulation of the SAWS for a chosen 
initial set of values (Fo, Go, Ho). In other words, we let the walker start its walking, for 
instance, at the lower left comer of the fractal generator and record the comer at which it 
leaves the generator, together with recording the total numbers NF, NG and NH of crossings 
of the F, G or H type (see figure 2) through elementaly squares. The SAW walker crosses 
an elementary square in the F ,  G or H way with the weight (probability) Fo, Go and Ho. 
respectively. We repeat this MC simulation L times, for the same set (Fo,  Go, Ho). and thus 
we find how many times the walker has passed through the generator in the F,  G or H way. 
We then get the values F’(Fo, Go, Ho), G‘(Fo, Go, Ho) and H’(F0. Go, Ho) by dividing the 
corresponding numbers by L. In this way we complete the first step of our generalization 
of the ‘homing’ procedure I71 for determining the relevant fixed point. In the next step, 
instead of using the unknown complete RG equations of type (4). we invoke the expansion 
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+ a2F' [ ( F  - Fo)(G -Go) + - a2F' [ ( F  - Fo) (H-  Ho) aFac o aFaH 0 

and similar expansions for G'(F, G, H) and H'(F ,  G. H). In these expansions, all quantities 
on the right-hand sides can be determined through the MC simulations. Indeed, the way we 
obtain the first terms in such expansions has already been explained, while the derivatives at 
the point (Fo ,  Go, Ho) can be related to various averages of N F ,  NG and NH. For instance, 
starting with (4) (in the notation that does not use the superscripts (r + 1) and r )  and by 
differentiating it with respect to F we get 

Treating now F,' as the grand canonical partition function, for the ensemble of all possible 
SAWS that SM at the lower left comer of the fractal generator and leave it at the lower right 
comer, we can write the corresponding ensemble average 

which can be directly measured in an MC simulation. Finally, comparing the last two 
equations, we can express one of the requisite derivatives in terms of the measurable quantity 

In a similar way, one can get additional eight derivatives, so that we can write the geneml 
formula 

where X and Y stand for any pair of quantities from the set I F ,  G ,  HI. Accordingly, 
the second derivatives that appear in (7) and likewise. expansions for G'(F, G, H) and 
H ' ( F , G , H ) ,  can be obtained by differentiating (11) with respect to Z, where 2 E 
{ F ,  G, HI. The result can be written in a condensed form 

which can be further simplified as 

for X = Z and as 
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for X # 2. In the last two formulae, the quantities (Ni)y, and ( N Z N x ) y r  can be measured 
in an MC simulation, as well as the quantity ( N x ) ~ .  

Thc preceding paragraph outlines the essence of the generalized 'homing' procedure. 
Yet, its last stage should be explained with an additional care. Namely, starting with the 
initial set (Fo, Go, Ho) and after performing an MC simulation, one looks for the fixed point 
by solving numerically equations of the type (7). The solution, denoted by ( F L ,  G I ,  HI), 
can be accepted to be a good approximation for the exact fixed point if the differences 
between the respective values of (FI, G I ,  HI) and (Fo, Go, Ho) are small enough. More 
precisely, one should require 

S MiloSeviC and I &viC 

IF1 - Fol < AFo IC1 -Col < AGO IHI - H o l  < AHo (15) 

where AFo, AGO and AH0 are the inherent uncertainties of the method applied. However, 
the latter quantities cannot be unambiguously specified (in contrast with the one-parameter 
MCRG method [2,7]) even though, in principle, they can be determined f" 

and from two similar equations for AGb and AH; by taking, for instance, AFo = 
Max(AF0p. AFo,, AFoH). Unfortunately, the increments on the right-hand sides of above 
equations are. not directly measured, whereas AF;, AG; and AH; are measurable quantities, 
as well as the pertinent nine partial derivatives. In this situation, we assume, in each of 
the equations of the type (16), equal contributions of the corresponding three terms, and 
thereby we adopt the following convention for finding the requisite uncertainties 

where X E (F ,  G ,  HI. In this way we specify conditions (15). If it tums out that these 
conditions are. not satisfied, we accept the set ( F I ,  G I ,  HI) as the next initial set of values 
and repeat the described MC procedure. Of course, in practice, it is usually necessary to 
repeat this procedure n times until the conditions 

IFn - Fn-11 < AFn-1 IG. - GPII -= AG.-i I 4  - Ha-11 < AHn-1 (18) 

become satisfied, so that finally the fixed point is identified with (Fn,  G., H"), which 
completes the 'homing' procedure. 

Having determined the fixed point, we need to solve the eigenvalue equation (5) in 
order to find the critical exponent v via the formula (6). Thus, we should find the partial 
derivatives aY'/aX (where X, Y E { F ,  G, H]) at the fixed point that is, at the point 
(Fn, Gn. Hn) ( F * ,  G', H') (it should be pointed out that the last MC simulation provides 
data for the partial derivatives at the point (F"-I .  G,-I, Ha-,), but not at the fixed point). 
To this en4 we use the expansion 
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where the partial derivatives at the point (&-I. G n - ~ ,  &-I)  can be calculated using the 
formula 

and similar formulae for a ( N x ) y f / a G  and a ( N x ) y . / a H  that follow from relations of the 
type (9). These formulae contain only the quantities that are directly measurable. In this 
way we can learn, through the MC simulations, the partial derivatives that appear in the 
eigenvalue equation (3, and consequently we can solve this equation numerically. It turns 
out that in all cases under study (5 < b < 81) the latter equation has only one relevant 
eigenvalue (A, z 1). 

3. Results and discussion 

In this section we present our MCRG results for the SAW critical exponent v for the CB family 
of fractals and discuss their relevance to the current knowledge of SAWS on fractals. We 
begin with presenting specific results for the coordinates of the fixed point ( F * ,  G', H') 
and v for 5 < b < 8 1. These data are given in table 1 together with the exact RG results for 
3 < b < 9 [4]. First, we note that there is very good agreement between the MCRG results 
for v and the corresponding exact RG results, that is, no deviation is larger than 0.06%. 
This means that, in spite of the complexity of performed calculations, the deviations for v 
are of the same order of magnitude as those found in the case of the one-parameter MCRG 
calculations [2,3]. Nexf we observe the monotonic decrease of U when b increases and, in 
particular, the crossing of the Euclidean value U = 0.75 at b ir. 25. 

Table 1. li-e M C ~ O  (5 6 b 6 81) resulu obtained in this work for the Fixed-point parameters 
F', G' and H'. and the SAW critical exponent U. For the sake of comparison, we also give the 
corresponding exact RO results [4]. for 3 6 b 6 9. 

b NoofMC F* C' H* " 
realization 

3 exact 
5 exact 

7 exact 
lo' 

10s 
9 exact 

105 
11 lo' 
13 1.1 x 10s 
15 lo' 
19 lo' 

25 lo' 
27 lo' 
35 I @  
43 1.3 x IOs 
51 IOs 
61 IO' 

23 I@ 

0.66371 
0.66433 f0.00058 
0.56805 
0.56783 iO.00040 
0.51576 
0.51482 f 0.00034 
0.48469 f 0.00028 
0.461 13 f 0.00024 
0.44802 fO.00024 
0.42743 i 0.00021 
0.41627 1 0,00020 
0.41088 k0.00019 
0.40912 f 0.00018 
0.39741 i 0.00018 
0.39479 * 0.00013 
0.39211 i 0.00021 
0.38865 fO.OW18 

1 
0.72464 
0.72433 f 0.00047 
0.62296 
0.62328 i 0 . W 3  
0.57123 
0.572361 0 . W 1  
0.53776 f O.WO37 
0.51878 f 0.00033 
0.49998 i 0.00035 
0.47866 f 0.00031 
0.46245 1 0.00031 
0.45764 k 0.00030 
0.44998 f 0.00028 
0.43778 f O.wo26 
0.42344 i O.Ml020 
0.41537 f 0.00033 
0.40980 * 0.00028 

0.10003 
0.10003 fO.00510 
0.05849 
0.05729 i 0.00267 
0.03869 
0.03819 f0.00326 
0.02927 f 0.00277 
0.02156 f 0.00333 
0.01672 i 0.00285 
0.01041 i 0.00235 
0.00783 i 0.00315 
0.00648 It 0.00234 
0.00565 f 0.00335 
0.00380 i 0.00535 
0.00271 f0.00318 
0.00143 iO.00613 
0.00095 i 0.00451 

1.oooOO 
0.85235 
0.85216 i 0.00304 
0.81502 
0.81552 fO.00199 
0.79578 
0.79594 i 0.00167 
0.78338 i O.GU142 
0.77532 i 0.00124 
0.76850 i 0.001 15 
0.75980 i 0.00098 
0.75261 i 0,00092 
0.75002 i 0.00086 
0.14156 i 0.00084 
0.74221 i 0.00082 
0.73742 f O.oo060 
0.73371 k 0.00079 
0.73196 f O.OW67 

71 lo '  0.38835 rO.00011 0.40280=0.00017 0.00082 r000187 0.72910~0.00050 
81 lo '  0.38686 I 0 00017 0.39970 = O.WM7 0.00076 = 0.00148 0.72765 s 0.00056 
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In figure 3 we depict the SAW critical exponent U, for the CB fractals, as a function of 
llb. In this figure we also present data for the so [21 and the PF [3] families of fractals. 
One can see that all three sets of data represent monotonically decreasing functions of b 
whose last values, in the intervals under study, lie well below the Euclidean value U = 3/4. 
Details of further behaviour of these three functions are unknown, except for the finite- 
size scaling argument t3.81 for the FF and SG fractals which in both cases predicts that U 
approaches 3/4 from below when b -+ CO. One could expect similar behaviour in the case 
of CB fractals, but the pertinent finite-size scaling argument cannot be elaborated since the 
requisite scaling laws for the functions F, G and H, are unknown, although our findings 
provide certain knowledge about them. For instance, one can see from table 1 that values of 
H* decrease much faster than values for F' and G', in such a way that one can expect that 
H* vanishes for very large b and, for this reason, it wuld be neglected in the corresponding 
finite-size scaling argument. This type of behaviour of H' can be related to the meaning of 
the partition function H (see figure 2) within the ensemble of all possible walks, whereby 
it should be clear that probability of the H type of SAWS vanishes for very large fractal 
generators. 

In addition to the foregoing technical details, one can rightEully raise the question about 
the apparent dichotomy between the observed decrease of data for finite b (in all three 
cases) and the predicted increase of data in the asymptotic region b -+ M. where they 
are expected to start to converge to 3/4 from below 181. At the beginning, one should 
notice that this dichotomy would have appeared even if we had not applied OUT MCRG. The 
dichotomy was brought about by the exact RG results for U for the SG fractals [ I ]  and by 
the subsequent finite-size scaling arguments [8], and it was later corroborated by a similar 
study in the case of PF fractals [3]. Moreover, the dichotomy is something that springs 
from various phenomenological formulae for U [%I41 when they are applied to the fractals 
studied Under these circumstances, the MCRG results for v have made a step forward by 
demonstrating that the dichotomous behaviour of U is not a peculiarity of the SG fractals, 
and, more importantly, by settling an important part of the dichotomy. Indeed, if the two 
predictions for the two regions of b (one for small b and the other for very large b) are both 
wrrect and the data for U are to meet somewhere, then the data should first cross the 314 
value at some finite b, which has been vindicated by the MCRG approach. In addition, the 
data should exhibit a minimum at some finite @ut probably very large) b. Unfortunately, 
the MCRC results obtained so far do not seem to be close to the position of the expected 
minimum. In fact, none of the phenomenological formulae [%I41 predicts a minimum 
before b = 650 in the case of the SG fractals [a], while a generalization of the approach 
initiated in [9] predicts the earliest location of the minimum at b % 1800 [3,15], that is, 
in a region that can hardly be reached using the present-day computers. This makes the 
entire problem more tantalizing, in particular as it seems not to be isolated. For instance, 
the systematic decrease below the relevant Euclidean value was observed also in the case 
of the crossover exponent @ for poIymer adsorption on the SG fractals [16]. 

Finally, we come back to the crossing of the Euclidean value U = 3/4 (see figure 3) 
that happens very close to bh = 26, in the case of all three families of fractals (SG. PF and 
CB). The closeness of the three crossings is surprising (it could not have been expected 
on the grounds of the corresponding exact RG results obtained for b e IO). Precisely, 
the three families comprise fractals of very different appearances and, more importantly, 
with different characteristics, that is, with disparate fractal dr and spectral ds dimensions 
(for instance, df = 2 for the entire PF family, whereas for both SG and CB df is given by 
two different monotonically increasing functions of b which approach 2 only for b -+ 05). 

Furthermore, it is appropriate to point out here that results obtained for the CB family of 
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l / 

l/b 

Figure 3. Data for the SAW critical exponent Y for the So family 01 fractals (A and A), PF 
family (0 and 0 )  and CB family (0 and M), plotted as functions of Ilb. The exact RG results 
are represented by solid symbols (A, 0 and M), while the MCRG results are depicted by open 
symbols. The thin lines that connect the results, serve merely as guides to the eye. The solid 
horiwntal line represents the Euclidean value 3/4. In lhe case of the CB data, lhere is an inflection 
forb 4 25 (see figure 4 of reference [4]), which might cause an impression that there is a fault 
in the data However. error bars related to Ihe MCRG data m all three cases (SO, PF and CB) are 
so small hat they all lie within h e  umesponding symbols. If is worth noting that lhere is no 
other simple function of b (of the type 1 / b x ,  where x is a consml, or of he type 1 I In b) which 
makes the three entire se13 of data mutually separated and, to some extent, parallel. The notable 
exception may be the plot of v versus the spectral dimension ds (see f igm 5 of reference 131). 
but, unforiunately,.d, is not known for the CB fractals forb z 5. 

fractals are valid also for the family of X fractals [4]. Thus, the only common feature in the 
region where the crossing of the Euclidean value 3/4 takes place appears to be the fact that 
the corresponding fractals have homogeneous pieces of the same size hi, x bh. Since our 
MCRG results deviate very little (at most 0.06% in all three cases) from the available exact 
RG results, one can accept the crossing as a reliable finding relevant to SAWS on fractals. In 
fact, this is, to our knowledge, the first universal element in the case of SAWS on fractals 
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and as such it should be further scrutinized and used to explain other relevant results. For 
instance, it can be used to explain certain results related to the controversial problem of 
SAWS on the critical percolation clusters. More particularly, if one accepts that U on the 
backbone of the infinite percolation cluster is definitely larger than 3/4 117,181 and looks 
for possible reasons for such a conclusion, then our result (bb = 26) offers an explanation. 
Namely, the conclusion originates from the MC simulations on backbones (see figure 1 of 
reference [171) which appear to be finitely ramified fractals with homogeneous parts of the 
size b5 5 10, that is, with bs i bh and which, on the grounds of WI results, should have 
v z 314. 
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